
HOMEWORK 9 − ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

Section 4.5: Summary of curve sketching

4.5.5.

D : R
I : x−intercepts: 0, 4, y−intercept: 0
S : None
A : None, but limx→±∞ f(x) =∞
I : f ′(x) = (x− 4)3 + 3x(x− 4)2 = (x− 4)2(x− 4 + 3x) = (x− 4)2(4x− 4) =

4(x−4)2(x−1); f is decreasing on (−∞, 1) and increasing on (1,∞); Local
minimum f(1) = −27

C : f ′′(x) = 8(x − 4)(x − 1) + 4(x − 4)2 = 4(x − 4)(2x − 2 + x − 4) =
4(x − 4)(3x − 6) = 12(x − 4)(x − 2); f is concave up on (−∞, 2), concave
down on (2, 4), and concave up on (4,∞). Inflection points: (2,−16), (4, 0)
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4.5.13.

D : R− {±3}
I : No x−intercepts, y−intercept: y = − 1

9
S : f is even
A : Horizontal Asymptote y = 0 (at ±∞), Vertical Asymptotes x = ±3
I : f ′(x) = − 2x

(x2−9)2 ; f is increasing on (−∞,−3) ∪ (−3, 0) and decreasing

on (0, 3) ∪ (3∞). Local maximum of −19 at 0.

C : f ′′(x) = 6 x2+3
(x2−9)3 ; f is concave up on (−∞,−3) ∪ (3,∞) and concave

down on (−3, 3); No inflection points

1A/Archive/Homeworks - Spring 2011/hw10graph1.png

4.5.45.

D : x > 0
I : No x−intercept because f(x) > 0 for all x (see Increasing/Decreasing

section). No y−intercept (not defined at 0)
S : No symmetries
A : Vertical asymptote x = 0, No Horizontal Asymptote, because:

lim
x→∞

x− ln(x) = lim
x→∞

x

(
1− ln(x)

x

)
=∞(1− 0) =∞

Also no slant asymptote, because if there were such a slant asymptote
y = ax+ b, then:

a = lim
x→∞

ln(x)− x
x

= −1

And then:

b = lim
x→∞

(ln(x)− x)− (−1)x = lim
x→∞

ln(x) =∞

which is a contradiction!
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I : f ′(x) = 1 − 1
x = x−1

x , so decreasing on (0, 1) and increasing on (1,∞);
local minimum f(x) = 1. In particular f(x) ≥ 1 for all x, and so f(x) > 0
(hence no x−intercept)

C : f ′′(x) = 1
x2 , concave up on (0,∞); No inflection points.
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4.5.71. At ∞:

Suppose the slant asymptote is y = ax+ b, then:

a = lim
x→∞

x− tan−1(x)

x
= lim
x→∞

1− tan−1(x)

x
= 1−

π
2

∞
= 1

b = lim
x→∞

x− tan−1(x)− x = lim
x→∞

− tan−1(x) = −π
2

Hence x− tan−1(x) has a slant asymptote of y = x− π
2 at ∞

At −∞:

Suppose the slant asymptote is y = ax+ b, then:

a = lim
x→−∞

x− tan−1(x)

x
= lim
x→−∞

1− tan−1(x)

x
= 1−

π
2

−∞
= 1
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b = lim
x→−∞

x− tan−1(x)− x = lim
x→−∞

− tan−1(x) = −
(
−π

2

)
=
π

2
Hence x− tan−1(x) has a slant asymptote of y = x+ π

2 at −∞

D Dom = R
I y−intercept: f(0) = 0, x−intercept: 0 (there are no others, because f is

increasing; see Increasing/Decreasing section)
S No symmetries
A No vertical asymptotes (f is defined everywhere), Slant Asymptotes y =
x− π

2 at ∞, y = x+ π
2 at −∞; No H.A. because there are already two S.A.

I f ′(x) = 1 − 1
1+x2 = x2

1+x2 ≥ 0, so f is increasing everywhere; No local

max/min

C f ′′(x) =
2x(1+x2)−x2(2x)

(1+x2)2
= 2x

(1+x2)2
, so f is concave down on (−∞, 0) and

concave up on (0,∞). Inflection point (0, f(0)) = (0, 0)
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Section 4.7: Optimization Problems

4.7.3.

- Want to minimize x+ y
- But xy = 100, so y = 100

x , so x+ y = x+ 100
x

- Let f(x) = x+ 100
x

- x > 0 (x is positive)
- f ′(x) = 0⇔ 1− 100

x2 = 0⇔ x2 = 100⇔ x = 10
- By FDTAEV, x = 10 is the absolute minimizer of f

- Answer: x = 10, y = 100
10 = 10

4.7.14.

- Want to minimize S = x2 + 4xh (where x is the length of the base-side and
h is the height)

- However, V = x2h = 32000, so h = 32000
x2 , so x2 + 4xh = x2 + 4x 32000

x2 =

x2 + 128000
x

- Let f(x) = x2 + 128000
x

- x > 0
- f ′(x) = 0⇔ 2x− 128000

x2 = 0⇔ 2x3 = 128000⇔ x = 3
√

64000 = 40
- By FDTAEV, x = 40 is the absolute minimizer of f

- Answer: x = 40, h = 32000
(40)2 = 32000

1600 = 20

4.7.21.

- We have D =
√

(x− 1)2 + y2, so D2 = (x− 1)2 + y2

- But y2 = 4− 4x2, so D2 = (x− 1)2 + 4− 4x2

- Let f(x) = (x− 1)2 + 4− 4x2

- No constraints
- f ′(x) = 2(x− 1)− 8x = −6x− 2 = 0⇔ x = − 1

3

- By the FDTAEV, x = − 1
3 is the maximizer of f .

- Since y2 = 4− 4x2, we get y2 = 4− 4
9 = 32

9 , so y = ±
√

32
9 = ± 4

√
2

3

- Answer:
(
− 1

3 ,−
4
√
2

3

)
and

(
− 1

3 ,
4
√
2

3

)

4.7.23. Picture:
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- We have A = xy, but the trick here again is to maximize A2 = x2y2 (thanks
for Huiling Pan, a former student of mine, for this suggestion!)

- But x2 + y2 = r2, so y2 = r2 − x2, so A2 = x2(r2 − x2) = x2r2 − x4
- Let f(x) = x2r2 − x4
- Constraint 0 ≤ x ≤ r (look at the picture)
- f ′(x) = 2xr2 − 4x3 = 0⇔ x = 0 or x = r√

2

- By the closed interval method, x = r√
2

is a maximizer of f (basically

f(0) = f(r) = 0

- Answer: x = r√
2
, y =

√
r2 − r2

2 = r√
2

4.7.32.

- A = 2rh+ 1
2πr

2

- But P = πr + 2r + 2h = 30, so h = 15− r − π
2 r

- Let f(r) = 2r
(
15− r − π

2 r
)

+ 1
2πr

2 = 30r−2r2−πr2 + 1
2πr

2 = 30r−2r2−
π
2 r

2

- Constraint r > 0
- f ′(r) = 30− 4r − πr = 0⇔ r = 30

π+4

- By FDTAEV, r = 30
π+4 is the minimizer of f

- r = 30
π+4 , h = 15− 30

π+4 −
15π
π+4 = 30

π+4 = r

4.7.48.

- Let tAB be the time spent rowing from A to B and tBC be the time spent
walking from B to C

- By the formula time = distance
velocity , we have:
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tAB =
AB

2
=

cos(θ)AC

2
=

4 cos(θ)

2
= 2 cos(θ)

tBC =
BC

4
=

2× ∠BOC
4

=
2× 2θ

4
= θ

(here O is the origin; it is a geometric fact that ∠BOC = 2∠BAC)
- Let f(θ) = 2 cos(θ) + θ
- Constraint: 0 ≤ θ ≤ π

2 (see the picture!)

- f ′(θ) = −2 sin(θ) + 1 = 0⇔ sin(θ) = 1
2 ⇔ θ = π

3

- f(0) = 2, f
(
π
2

)
= π

2 and f
(
π
3

)
= 2×

√
3
2 + π

3 =
√

3 + π
3 .

By the closed interval method, θ = π
2 is an absolute minimizer.

- Therefore, she should just walk! (which makes sense because she walks
much faster than she rows!)

4.7.61.

(a) p(x) = 550− x
10 (Basically imitate Example 6 on page 331)

(b) The revenue function is R(x) = xp(x) = 550x − x2

10 . R′(x) = 0 ⇔ 550 =
x
5 ⇔ x = 2750, and the corresponding price is p(2750) = 550 − 275 = 275
and the rebate is 450− 275 = 175 dollars

(c) Here the profit function is P (x) = R(x)−C(x) = 550x− x2

10 −68000−150x.
P ′(x) = 0⇔ 550− x

5 − 150 = 0⇔ x = 2000, so the corresponding price is
p(2000) = 550− 200 = 350, so the corresponding rebate is 450− 350 = 100
dollars

4.7.67. The picture is as follows:
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1A/Math 1A - Fall 2013/Solution Bank/hw10opt2.png

Here, h1 and h2 and L are fixed, but x varies.
Now the total time taken is t = t1 + t2 = d1

v1
+ d2

v2
.

Now, by the Pythagorean theorem: d1 =
√
x2 + h21 and d2 =

√
(L− x)2 + h22,

so we get:

t(x) =

√
x2 + h21
v1

+

√
(L− x)2 + h22

v2

And

t′(x) =
x

v1
√
x2 + h21

+
x− L

v2
√

(L− x)2 + h22
=

x

v1d1
+
x− L
v2d2

Setting t′(x) = 0 and cross-multiplying, we get:

v1d1(L− x) = v2d2x

So, by definition of sin(θ1) and sin(θ2)), we get:

v1
v2

=
d2x

(L− x)d1
=

x
d1
L−x
d2

=
sin(θ1)

sin(θ2)

Note: Thank you Brianna Grado-White (a former student of mine) for a solution
to this problem!

4.7.70. The picture is as follows (Note that the two θ−s are indeed the same!)
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- We want to minimize L1 + L2

- cos(θ) = L1

9 , so L1 = 9
cos(θ) , sin(θ) = L2

6 , so L2 = 6
sin(θ)

- Let f(θ) = 9
cos(θ) + 6

sin(θ)

- Constraint: 0 < θ < π
2 (Notice that at 0 and π

2 , we can’t carry the pipe
horizontally around the corner; it would break at that corner)

- f ′(θ) = 9 sin(θ)
cos2(θ) + −6 cos(θ)

sin2(θ)
= 9 sin3(θ)−6 cos3(θ)

cos2(θ) sin2(θ)
= 0

⇔ 9 sin3(θ)− 6 cos3(θ) = 0⇔
(

sin(θ)
cos(θ)

)3
= 6

9 = 2
3 ⇔ tan3(θ) = 2

3 ⇔ θ =

tan−1
(

3

√
2
3

)
- By FDTAEV, θ = tan−1

(
3

√
2
3

)
is the absolute minimizer of f

- Answer: 9
cos(θ) + 6

sin(θ) , where θ = tan−1
(

3

√
2
3

)
(if you want to, you

can simplify this using the triangle method: 1
cos(tan−1(x)) =

√
1 + x2 and

1
sin(tan−1(x)) =

√
1+x2

x , but I think this is enough torture for now :)

Disclaimer: This last problem problem is kinda ridiculous, and it took me an
hour to figure this out! However, that doesn’t mean that you shouldn’t do it!
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Section 4.9: Antiderivatives

4.9.16. R(θ) = sec(θ)− 2eθ

4.9.35. f(x) = −2 sin(t) + tan(t) + C, but 4 = f(π3 ) = −
√

3 +
√

3 + C = C, so
f(x) = −2 sin(t) + tan(t) + 4

4.9.63. a(t) = 10 sin(t) + 3 cos(t), so v(t) = −10 cos(t) + 3 sin(t) + A, so s(t) =
−10 sin(t)− 3 cos(t) +At+B

Now, s(0) = 0, but s(0) = −10(0)− 3(1) +A(0) +B, so −3 +B = 0, so B = 3

So s(t) = −10 sin(t)− 3 cos(t) +At+ 3

Moreover, s(2π) = 12, but s(2π) = −10(0) − 3(1) + A(2π) + 3 = A(2π), so
A(2π) = 12, so A = 12

2π = 6
π

So altogether, you get: s(t) = −10 sin(t)− 3 cos(t) + 6
π t+ 3

4.9.76. Suppose the acceleration of the car is a(t) = A. Then v(t) = At + B and
s(t) = A

2 t
2 +Bt+ C.

However, at t = 0, the car is moving at 100 km/h, so v(0) = 100, so B = 100,
hence v(t) = At+ 100 and s(t) = A

2 t
2 + 100t+ C.

Moreover, at t = 0, the car is at its initial position 0, so s(0) = 0, so C = 0,
hence s(t) = A

2 t
2 + 100t

Now let t∗ be the time needed to real the pile-up.

We want the car to have 0 velocity at t∗, hence v(t∗) = 0, hence At∗ + 100 = 0,
so At∗ = −100

Moreover, we want s(t∗) = 80m = 0.08 km, so A
2 (t∗)

2
+ 100t∗ = 0.08, but using

the fact that At∗ = −100, this just becomes: −100t
∗

2 + 100t∗ = 0.08, so 50t∗ = 0.08,

so t∗ = 1
625 .

ThereforeA = − 100
t∗ = −100×625 = −62500 km/h2, so the answer is 62500 km/h2 .


