HOMEWORK 9 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

SEction 4.5: Summary of curve sketching

4.5.5.

$\mathrm{D}: \mathbb{R}$
I : x-intercepts: $0,4, y$-intercept: 0
S : None
A : None, but $\lim _{x \rightarrow \pm \infty} f(x)=\infty$
I : $f^{\prime}(x)=(x-4)^{3}+3 x(x-4)^{2}=(x-4)^{2}(x-4+3 x)=(x-4)^{2}(4 x-4)=$ $4(x-4)^{2}(x-1) ; f$ is decreasing on $(-\infty, 1)$ and increasing on $(1, \infty)$; Local minimum $f(1)=-27$
C : $f^{\prime \prime}(x)=8(x-4)(x-1)+4(x-4)^{2}=4(x-4)(2 x-2+x-4)=$ $4(x-4)(3 x-6)=12(x-4)(x-2) ; f$ is concave up on $(-\infty, 2)$, concave down on $(2,4)$, and concave up on $(4, \infty)$. Inflection points: $(2,-16),(4,0)$

1A/Math 1A - Fall 2013/Homeworks/Quartic.png

[^0]
4.5.13.

D : $\mathbb{R}-\{ \pm 3\}$
I : No x-intercepts, y-intercept: $y=-\frac{1}{9}$
$\mathrm{S}: f$ is even
A : Horizontal Asymptote $y=0$ (at $\pm \infty$), Vertical Asymptotes $x= \pm 3$
$\mathrm{I}: f^{\prime}(x)=-\frac{2 x}{\left(x^{2}-9\right)^{2}} ; f$ is increasing on $(-\infty,-3) \cup(-3,0)$ and decreasing on $(0,3) \cup(3 \infty)$. Local maximum of $\frac{-1}{9}$ at 0 .
$\mathrm{C}: f^{\prime \prime}(x)=6 \frac{x^{2}+3}{\left(x^{2}-9\right)^{3}} ; f$ is concave up on $(-\infty,-3) \cup(3, \infty)$ and concave down on $(-3,3)$; No inflection points

1A/Archive/Homeworks - Spring 2011/hw10graph1.png

4.5.45.

D : $x>0$
I : No x-intercept because $f(x)>0$ for all x (see Increasing/Decreasing section). No y-intercept (not defined at 0)
S : No symmetries
A : Vertical asymptote $x=0$, No Horizontal Asymptote, because:

$$
\lim _{x \rightarrow \infty} x-\ln (x)=\lim _{x \rightarrow \infty} x\left(1-\frac{\ln (x)}{x}\right)=\infty(1-0)=\infty
$$

Also no slant asymptote, because if there were such a slant asymptote $y=a x+b$, then:

$$
a=\lim _{x \rightarrow \infty} \frac{\ln (x)-x}{x}=-1
$$

And then:

$$
b=\lim _{x \rightarrow \infty}(\ln (x)-x)-(-1) x=\lim _{x \rightarrow \infty} \ln (x)=\infty
$$

which is a contradiction!

I : $f^{\prime}(x)=1-\frac{1}{x}=\frac{x-1}{x}$, so decreasing on $(0,1)$ and increasing on $(1, \infty)$; local minimum $f(x)=1$. In particular $f(x) \geq 1$ for all x, and so $f(x)>0$ (hence no x-intercept)
$\mathrm{C}: f^{\prime \prime}(x)=\frac{1}{x^{2}}$, concave up on $(0, \infty)$; No inflection points.
1A/Math 1A - Fall 2013/Homeworks/x - $\ln (\mathrm{x})$.png

4.5.71. At $\infty:$

Suppose the slant asymptote is $y=a x+b$, then:

$$
\begin{gathered}
a=\lim _{x \rightarrow \infty} \frac{x-\tan ^{-1}(x)}{x}=\lim _{x \rightarrow \infty} 1-\frac{\tan ^{-1}(x)}{x}=1-\frac{\frac{\pi}{2}}{\infty}=1 \\
b=\lim _{x \rightarrow \infty} x-\tan ^{-1}(x)-x=\lim _{x \rightarrow \infty}-\tan ^{-1}(x)=-\frac{\pi}{2}
\end{gathered}
$$

Hence $x-\tan ^{-1}(x)$ has a slant asymptote of $y=x-\frac{\pi}{2}$ at ∞

At $-\infty$:
Suppose the slant asymptote is $y=a x+b$, then:

$$
a=\lim _{x \rightarrow-\infty} \frac{x-\tan ^{-1}(x)}{x}=\lim _{x \rightarrow-\infty} 1-\frac{\tan ^{-1}(x)}{x}=1-\frac{\frac{\pi}{2}}{-\infty}=1
$$

$$
b=\lim _{x \rightarrow-\infty} x-\tan ^{-1}(x)-x=\lim _{x \rightarrow-\infty}-\tan ^{-1}(x)=-\left(-\frac{\pi}{2}\right)=\frac{\pi}{2}
$$

Hence $x-\tan ^{-1}(x)$ has a slant asymptote of $y=x+\frac{\pi}{2}$ at $-\infty$

D $\operatorname{Dom}=\mathbb{R}$
I y-intercept: $f(0)=0, x$-intercept: 0 (there are no others, because f is increasing; see Increasing/Decreasing section)
S No symmetries
A No vertical asymptotes (f is defined everywhere), Slant Asymptotes $y=$ $x-\frac{\pi}{2}$ at $\infty, y=x+\frac{\pi}{2}$ at $-\infty$; No H.A. because there are already two S.A.
I $f^{\prime}(x)=1-\frac{1}{1+x^{2}}=\frac{x^{2}}{1+x^{2}} \geq 0$, so f is increasing everywhere; No local \max / \min
C $f^{\prime \prime}(x)=\frac{2 x\left(1+x^{2}\right)-x^{2}(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}$, so f is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$. Inflection point $(0, f(0))=(0,0)$

1A/Math 1A - Fall 2013/Homeworks/x - arctan(x).png

Section 4.7: Optimization Problems

4.7.3.

- Want to minimize $x+y$
- But $x y=100$, so $y=\frac{100}{x}$, so $x+y=x+\frac{100}{x}$
- Let $f(x)=x+\frac{100}{x}$
- $x>0$ (x is positive)
- $f^{\prime}(x)=0 \Leftrightarrow 1-\frac{100}{x^{2}}=0 \Leftrightarrow x^{2}=100 \Leftrightarrow x=10$
- By FDTAEV, $x=10$ is the absolute minimizer of f
- Answer: $x=10, y=\frac{100}{10}=10$

4.7.14.

- Want to minimize $S=x^{2}+4 x h$ (where x is the length of the base-side and h is the height)
- However, $V=x^{2} h=32000$, so $h=\frac{32000}{x^{2}}$, so $x^{2}+4 x h=x^{2}+4 x \frac{32000}{x^{2}}=$ $x^{2}+\frac{128000}{x}$
- Let $f(x)^{x}=x^{2}+\frac{128000}{x}$
- $x>0$
- $f^{\prime}(x)=0 \Leftrightarrow 2 x-\frac{128000}{x^{2}}=0 \Leftrightarrow 2 x^{3}=128000 \Leftrightarrow x=\sqrt[3]{64000}=40$
- By FDTAEV, $x=40$ is the absolute minimizer of f
- Answer: $x=40, h=\frac{32000}{(40)^{2}}=\frac{32000}{1600}=20$

4.7.21.

- We have $D=\sqrt{(x-1)^{2}+y^{2}}$, so $D^{2}=(x-1)^{2}+y^{2}$
- But $y^{2}=4-4 x^{2}$, so $D^{2}=(x-1)^{2}+4-4 x^{2}$
- Let $f(x)=(x-1)^{2}+4-4 x^{2}$
- No constraints
- $f^{\prime}(x)=2(x-1)-8 x=-6 x-2=0 \Leftrightarrow x=-\frac{1}{3}$
- By the FDTAEV, $x=-\frac{1}{3}$ is the maximizer of f.
- Since $y^{2}=4-4 x^{2}$, we get $y^{2}=4-\frac{4}{9}=\frac{32}{9}$, so $y= \pm \sqrt{\frac{32}{9}}= \pm \frac{4 \sqrt{2}}{3}$
- Answer: $\left(-\frac{1}{3},-\frac{4 \sqrt{2}}{3}\right)$ and $\left(-\frac{1}{3}, \frac{4 \sqrt{2}}{3}\right)$
4.7.23. Picture:

1A/Math 1A - Fall 2013/Solution Bank/hw10opt1.png

- We have $A=x y$, but the trick here again is to maximize $A^{2}=x^{2} y^{2}$ (thanks for Huiling Pan, a former student of mine, for this suggestion!)
- But $x^{2}+y^{2}=r^{2}$, so $y^{2}=r^{2}-x^{2}$, so $A^{2}=x^{2}\left(r^{2}-x^{2}\right)=x^{2} r^{2}-x^{4}$
- Let $f(x)=x^{2} r^{2}-x^{4}$
- Constraint $0 \leq x \leq r$ (look at the picture)
- $f^{\prime}(x)=2 x r^{2}-4 x^{3}=0 \Leftrightarrow x=0$ or $x=\frac{r}{\sqrt{2}}$
- By the closed interval method, $x=\frac{r}{\sqrt{2}}$ is a maximizer of f (basically $f(0)=f(r)=0$
- Answer: $x=\frac{r}{\sqrt{2}}, y=\sqrt{r^{2}-\frac{r^{2}}{2}}=\frac{r}{\sqrt{2}}$

4.7.32.

- $A=2 r h+\frac{1}{2} \pi r^{2}$
- But $P=\pi r+2 r+2 h=30$, so $h=15-r-\frac{\pi}{2} r$
- Let $f(r)=2 r\left(15-r-\frac{\pi}{2} r\right)+\frac{1}{2} \pi r^{2}=30 r-2 r^{2}-\pi r^{2}+\frac{1}{2} \pi r^{2}=30 r-2 r^{2}-$ $\frac{\pi}{2} r^{2}$
- Constraint $r>0$
- $f^{\prime}(r)=30-4 r-\pi r=0 \Leftrightarrow r=\frac{30}{\pi+4}$
- By FDTAEV, $r=\frac{30}{\pi+4}$ is the minimizer of f
$-r=\frac{30}{\pi+4}, h=15-\frac{30}{\pi+4}-\frac{15 \pi}{\pi+4}=\frac{30}{\pi+4}=r$

4.7.48.

- Let $t_{A B}$ be the time spent rowing from A to B and $t_{B C}$ be the time spent walking from B to C
- By the formula time $=\frac{\text { distance }}{\text { velocity }}$, we have:

$$
t_{A B}=\frac{A B}{2}=\frac{\cos (\theta) A C}{2}=\frac{4 \cos (\theta)}{2}=2 \cos (\theta)
$$

$$
t_{B C}=\frac{B C}{4}=\frac{2 \times \angle B O C}{4}=\frac{2 \times 2 \theta}{4}=\theta
$$

(here O is the origin; it is a geometric fact that $\angle B O C=2 \angle B A C$)

- Let $f(\theta)=2 \cos (\theta)+\theta$
- Constraint: $0 \leq \theta \leq \frac{\pi}{2}$ (see the picture!)
- $f^{\prime}(\theta)=-2 \sin (\theta)+1=0 \Leftrightarrow \sin (\theta)=\frac{1}{2} \Leftrightarrow \theta=\frac{\pi}{3}$
- $f(0)=2, f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$ and $f\left(\frac{\pi}{3}\right)=2 \times \frac{\sqrt{3}}{2}+\frac{\pi}{3}=\sqrt{3}+\frac{\pi}{3}$.

By the closed interval method, $\theta=\frac{\pi}{2}$ is an absolute minimizer.

- Therefore, she should just walk! (which makes sense because she walks much faster than she rows!)

4.7.61.

(a) $p(x)=550-\frac{x}{10}$ (Basically imitate Example 6 on page 331)
(b) The revenue function is $R(x)=x p(x)=550 x-\frac{x^{2}}{10} . R^{\prime}(x)=0 \Leftrightarrow 550=$ $\frac{x}{5} \Leftrightarrow x=2750$, and the corresponding price is $p(2750)=550-275=275$ and the rebate is $450-275=175$ dollars
(c) Here the profit function is $P(x)=R(x)-C(x)=550 x-\frac{x^{2}}{10}-68000-150 x$. $P^{\prime}(x)=0 \Leftrightarrow 550-\frac{x}{5}-150=0 \Leftrightarrow x=2000$, so the corresponding price is $p(2000)=550-200=350$, so the corresponding rebate is $450-350=100$ dollars
4.7.67. The picture is as follows:

1A/Math 1A - Fall 2013/Solution Bank/hw10opt2.png

Here, h_{1} and h_{2} and L are fixed, but x varies.
Now the total time taken is $t=t_{1}+t_{2}=\frac{d_{1}}{v_{1}}+\frac{d_{2}}{v_{2}}$.
Now, by the Pythagorean theorem: $d_{1}=\sqrt{x^{2}+h_{1}^{2}}$ and $d_{2}=\sqrt{(L-x)^{2}+h_{2}^{2}}$, so we get:

$$
t(x)=\frac{\sqrt{x^{2}+h_{1}^{2}}}{v_{1}}+\frac{\sqrt{(L-x)^{2}+h_{2}^{2}}}{v_{2}}
$$

And

$$
t^{\prime}(x)=\frac{x}{v_{1} \sqrt{x^{2}+h_{1}^{2}}}+\frac{x-L}{v_{2} \sqrt{(L-x)^{2}+h_{2}^{2}}}=\frac{x}{v_{1} d_{1}}+\frac{x-L}{v_{2} d_{2}}
$$

Setting $t^{\prime}(x)=0$ and cross-multiplying, we get:

$$
v_{1} d_{1}(L-x)=v_{2} d_{2} x
$$

So, by definition of $\sin \left(\theta_{1}\right)$ and $\left.\sin \left(\theta_{2}\right)\right)$, we get:

$$
\frac{v_{1}}{v_{2}}=\frac{d_{2} x}{(L-x) d_{1}}=\frac{\frac{x}{d_{1}}}{\frac{L-x}{d_{2}}}=\frac{\sin \left(\theta_{1}\right)}{\sin \left(\theta_{2}\right)}
$$

Note: Thank you Brianna Grado-White (a former student of mine) for a solution to this problem!
4.7.70. The picture is as follows (Note that the two θ-s are indeed the same!)

1A/Math 1A - Fall 2013/Homeworks/Pipe.png

- We want to minimize $L_{1}+L_{2}$
- $\cos (\theta)=\frac{L_{1}}{9}$, so $L_{1}=\frac{9}{\cos (\theta)}, \sin (\theta)=\frac{L_{2}}{6}$, so $L_{2}=\frac{6}{\sin (\theta)}$
- Let $f(\theta)=\frac{9}{\cos (\theta)}+\frac{6}{\sin (\theta)}$
- Constraint: $0<\theta<\frac{\pi}{2}$ (Notice that at 0 and $\frac{\pi}{2}$, we can't carry the pipe horizontally around the corner; it would break at that corner)
- $f^{\prime}(\theta)=\frac{9 \sin (\theta)}{\cos ^{2}(\theta)}+\frac{-6 \cos (\theta)}{\sin ^{2}(\theta)}=\frac{9 \sin ^{3}(\theta)-6 \cos ^{3}(\theta)}{\cos ^{2}(\theta) \sin ^{2}(\theta)}=0$

$$
\Leftrightarrow 9 \sin ^{3}(\theta)-6 \cos ^{3}(\theta)=0 \Leftrightarrow\left(\frac{\sin (\theta)}{\cos (\theta)}\right)^{3}=\frac{6}{9}=\frac{2}{3} \Leftrightarrow \tan ^{3}(\theta)=\frac{2}{3} \Leftrightarrow \theta=
$$ $\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$

- By FDTAEV, $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$ is the absolute minimizer of f
- Answer: $\frac{9}{\cos (\theta)}+\frac{6}{\sin (\theta)}$, where $\theta=\tan ^{-1}\left(\sqrt[3]{\frac{2}{3}}\right)$ (if you want to, you can simplify this using the triangle method: $\frac{1}{\cos \left(\tan ^{-1}(x)\right)}=\sqrt{1+x^{2}}$ and $\frac{1}{\sin \left(\tan ^{-1}(x)\right)}=\frac{\sqrt{1+x^{2}}}{x}$, but I think this is enough torture for now :)
Disclaimer: This last problem problem is kinda ridiculous, and it took me an hour to figure this out! However, that doesn't mean that you shouldn't do it!

Section 4.9: Antiderivatives

4.9.16. $R(\theta)=\sec (\theta)-2 e^{\theta}$
4.9.35. $f(x)=-2 \sin (t)+\tan (t)+C$, but $4=f\left(\frac{\pi}{3}\right)=-\sqrt{3}+\sqrt{3}+C=C$, so $f(x)=-2 \sin (t)+\tan (t)+4$
4.9.63. $a(t)=10 \sin (t)+3 \cos (t)$, so $v(t)=-10 \cos (t)+3 \sin (t)+A$, so $s(t)=$ $-10 \sin (t)-3 \cos (t)+A t+B$

Now, $s(0)=0$, but $s(0)=-10(0)-3(1)+A(0)+B$, so $-3+B=0$, so $B=3$
So $s(t)=-10 \sin (t)-3 \cos (t)+A t+3$
Moreover, $s(2 \pi)=12$, but $s(2 \pi)=-10(0)-3(1)+A(2 \pi)+3=A(2 \pi)$, so $A(2 \pi)=12$, so $A=\frac{12}{2 \pi}=\frac{6}{\pi}$

So altogether, you get: $s(t)=-10 \sin (t)-3 \cos (t)+\frac{6}{\pi} t+3$
4.9.76. Suppose the acceleration of the car is $a(t)=A$. Then $v(t)=A t+B$ and $s(t)=\frac{A}{2} t^{2}+B t+C$.

However, at $t=0$, the car is moving at $100 \mathrm{~km} / \mathrm{h}$, so $v(0)=100$, so $B=100$, hence $v(t)=A t+100$ and $s(t)=\frac{A}{2} t^{2}+100 t+C$.

Moreover, at $t=0$, the car is at its initial position 0 , so $s(0)=0$, so $C=0$, hence $s(t)=\frac{A}{2} t^{2}+100 t$

Now let t^{*} be the time needed to real the pile-up.
We want the car to have 0 velocity at t^{*}, hence $v\left(t^{*}\right)=0$, hence $A t^{*}+100=0$, so $A t^{*}=-100$

Moreover, we want $s\left(t^{*}\right)=80 \mathrm{~m}=0.08 \mathrm{~km}$, so $\frac{A}{2}\left(t^{*}\right)^{2}+100 t^{*}=0.08$, but using the fact that $A t^{*}=-100$, this just becomes: $\frac{-100 t^{*}}{2}+100 t^{*}=0.08$, so $50 t^{*}=0.08$, so $t^{*}=\frac{1}{625}$.

Therefore $A=-\frac{100}{t^{*}}=-100 \times 625=-62500 \mathrm{~km} / \mathrm{h}^{2}$, so the answer is $62500 \mathrm{~km} / \mathrm{h}^{2}$.

[^0]: Date: Friday, November 8th, 2013.

